Finite Element Modeling of the Human Foot and Footwear

نویسندگان

  • Jason Tak-Man Cheung
  • Ming Zhang
چکیده

A finite element (FE) model of the human foot and ankle was developed from 3D reconstruction of 2 mm coronal MR images from the right foot of a normal male subject using the segmentation software, Mimics. Solid models of 28 foot bones and encapsulated soft tissue structures models established in Solidworks software were imported into ABAQUS for creating the tetrahedral FE meshes. The plantar fascia and 72 ligaments were defined by connecting the corresponding attachment points on the bones using tension-only truss elements. Contact interactions among the major joints were prescribed to allow relative bone movements. A foot support was used to establish the frictional contact interaction between the foot-support interfaces. The contour of the arch-supporting foot orthoses was obtained from digitization of the subject’s foot via a 3D laser scanner. Algorithms were established in Matlab software to create surface models from the digitized foot surface. Solid model of the foot orthoses established in the Solidworks software was properly partitioned in ABAQUS for creating the hexahedral FE meshes. The encapsulated soft tissue and orthotic material were defined as hyperelastic while other tissues were idealized as homogeneous, isotropic and linearly elastic. The ground reaction and extrinsic muscles forces for simulating the stance phase of gait were applied at the inferior ground support and at their corresponding points of insertion by defining contraction forces via axial connector elements, respectively. The FE predictions are being validated by experimental measurements conducted on cadavers and on the same subject who volunteered for the MR scanning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling Time Resolved Light Propagation Inside a Realistic Human Head Model

Background: Near infrared spectroscopy imaging is one of the new techniques used for investigating structural and functionality of different body tissues. This is done by injecting light into the medium and measuring the photon intensity at the surface of the tissue.Method: In this paper the different medical applications, various imaging and simulation techniques of NIRS imaging is described. ...

متن کامل

Finite element modeling of the human head under baton impact

Purpose: This research will try to predict damage probability and calculate the main stress resulted from baton impacts by finite element (FE) modeling of the human head considering skull texture, brain and cerebrospinal fluid.Materials and Methods: A three dimensional FE model of the skull-brain complex was constructed for simulating the baton impact. The FE analysis was carried out using ANSY...

متن کامل

Compact and portable digitally controlled device for testing footwear materials: technical note.

Little or no practical decision-making data are available to the foot-care provider regarding the selection of orthotic materials used in therapeutic footwear. A device for simulating in-shoe forefoot conditions for the testing of orthosis materials is described. Materials are tested for their effectiveness by evaluating and comparing stress-strain and dynamic compression fatigue characteristic...

متن کامل

Meso-scale Modeling of Tension Analysis of Pure and Intra-ply Hybrid Woven Composites Using Finite Element Method

One of the key issues associated with using of composites in various applications is their tensile behavior. The tensile behavior of a composite material is strongly influenced by the properties of its constituents and their distribution. This paper focuses on gaining some insights into the tensile process of pure and hybrid woven composite reinforced with brittle and ductile yarns. For this pu...

متن کامل

Finite Element Modeling of Strain Rate and Grain Size Dependency in Nanocrystalline Materials

Nanocrystalline materials show a higher strain-rate sensitivity in contrast to the conventional coarse-grained materials and a different grain size dependency. To explain these phenomenon, a finite element model is constructed that considers both grain interior and grain boundary deformation of nanocrystalline materials. The model consist of several crystalline cores with different orientations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006